APPENDIXA

PROOF OF PROPOSITION
A. Proposition 1

We show that the expected penalty of the environm@ntP), satisfies the required conditions
of non-stationary environment Model B [10]. In the following we assume that the initial action
probability profiles,P(0), which are selected by SUs satisfy the stability condition in (1). In
the case that this initial probability does not satisfy (1), one or more channels will be highly
overloaded and the probabilities of SUs collisions on those channels are increased dramatically.
Therefore, the corresponding SUs receive high punishments according to the proposed scheme
and gradually tune their channel access probabilities such that the stability condition of (1) is
satisfied. After this incurred delay, the learning process will continue until each SU settles in its
best strategy and the system becomes stable. That is, without lose of generality, we assume that
the initial time is set to zero and the initial probability(0), satisfy (1).

The required conditions for non-stationary environment Model B that must be satisfied are
[10]:

. Equation (19) is continuous in all of its arguments.

CJZ

. The value of?*) s positive as is shown in (27).
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Note that using the stability condition (1) for chann€l the value of;; — pji)\E.SU) is

positive and hencg(g;j—@ > 0.
]t

« We haveaof—i(P) =0, m=1,2,...,M, m # i and hence the required conditi%}@ <
gm

aC;i(P)
Opji

« C;;(P) must be continuously differentiable in all its arguments. Equation (27) shows that

for m # i IS satisfied.

C;;(P) is continuously differentiable respect {@,. In the following we compute the
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derivative of C;;(P) respect topy;, k #j , k=1,2,...,N.
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Equation (28) shows that derivative 6f;(P) respect topy;, k =1,2,..., N, k # j exists
and is positive.
. In this item we verify the Lipschitz continuity property 6f;(P) respect to all of its argu-
ments by showing that the derivative@f;(P) respect tg,; andpy;, k =1,2,..., N, k # j
are bounded. As we can see in (27) and (28); — p;;\\*") — 0" and (s — puiA) —
0" are the critical points, but these points are bounded by the exponential function in the
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following limits:
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lim >\j Hji + )\j RJ" exp (_ pji)\j + Rji Zpk: )\(SU)) 0
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j
(29)
N
. A s + NV Ry, pride ) + Ry (SUN _
hI(Isl‘U) (SU)\9 €xp (_ (PU) (SU) Z pnz/\n ) =0
(ni=piid ) =0 (pri — Pridy, ) (s = N7 (e — Py, ) i
n#k,j
(30)

Therefore,C;(P) is a Lipschitz function respect to all of its arguments with Lipschitz
constantX’ = sup || VC;(P) |.

Therefore, the proposed expected penaltyP) for eachSU; on each channef; follows the
non-stationary environment Model B properties. As we computed in Proposition 1, derivative
of C;;(P) respect topy;, k = 1,2,...,N, k # j is positive. Therefore, it is monotonically
increasing function respect {o_;.

APPENDIXB

PROOF OF PROPOSITION?

We rewrite (20) for each components 6fP(¢) by using (18) as follow:
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Bpit) = B psi(t + Dlpis(t)| = psi(t)

6
= (Z C;‘i <_5gl‘z'(t)0‘pﬂ( )+ 551 ijm )) Pji
=1 m#i
m#t \[l=1
= _C(pji(t)zcjz + apjl ijm Z Cji — ap]z Zp]m z )
m#i m#i
+ CV]\41_ 1 ijm<t)cjm apjl Zp]m m )
m#i m#i
M 6
— apji(t) ijm(t) Cé‘m + ap;i(t ijm im(P(1))
m#£i =1 m#i
(31)
Sincey ) dy=1,i=1,..., M we have:
M
Apji(t) —ap;i(t)*Cii(P(t)) — apji(t) Y pim(H)Cii(P(t))
1 M
+ o %:pjm<t>0]m<P<t>>
(32)
We can replac@f‘f# pim(t) =1 — pj;(t) and therefore:
Apji(t) = —apu(t)*C(P(t)) — ap;i(t)Cji(P(t)) + ap;i(t)*Cyi(P(1))
M
b ooz > pn(0n(PL0)
= —ap;i(t)C;(P(1)) + (t)
(33)

therefore, equation (21) can be concluded from (33).
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APPENDIXC

PROOF OF PROPOSITIONS

Let define/C as the set of action selection probabilities for SUs:

M
T .. .
K:{P:[pip,pg,...7pm , Vi1 0<p;; <1, Vj:ijizl} (34)

=1

It is clear thatC is a compact and convex set. It is also easy to verify that the value of
pi(t+1),j =1,...,N, i =1,...,M which is computed by components of (23) is i
Therefore, equation (23) can be considered as a continuous mapping which is derBt@&d by
of (P) + P from K to K.

By using Brouwer’s fix point theorenT(P(¢)) has at least one fix point which B* = T'(P*)
and the sequence (23) converges to this fix point. The fix poiff (@) can be computed as
P* = of (P*) + P*. Sincea is a non zero parameter therefdi@*) = 0.

Thus each component;(P*) =0, j = 1,...,N,¢ = 1,..., M. Therefore, for eactbU;
there is a system of equations as follow:

( * * *
T o Do (D (P7) — iy (

T Loz P (1) G (P*) = s
: (35)
7 Lomgnt P (1) Cjm(P) = 93 (1) Cipa (P*) = 0
[ Xpi=1

We can conclude following system of equations from system of equations (35) for each
SU;, j=1,...,N:

p;:C5i(P*) = 05, Cim(P*)  i,m=1,....M
Z?i1pji =1

and therefore, the system of equation (24) can be concluded for whole system. It is clear that

(36)

the system of equation (24) has at least one solution because this solution is the fix point of the

continuous mappind’(P) over K which based on Brouwer’s fix point theorem this point exists
for T'(P).
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APPENDIXD

PROOF OF PROPOSITIOM AND PROPOSITIONS

A. Proposition 4

In order to investigate the Lyapunov stability, first of all, the origin is transferred to equilibrium
point P*, and then a candidate for Lyapunov function is introduced in order to investigate the
stability of the discrete-time system (23) which is used in Algorithm 1. By using the following

transformation we shift the origin t*:

First of all, we show thatAP(¢) has the components in form @&fp;;(t) = —p,:(t)C;:(P(t)).
It is clear thatAp;;(t) = Apj;(t). Therefore:

Apji(t) = o Ml_lijm(t)ij(P)—pji(t)Oji(P))
m%£i

= o (T S ol + P Con(P () — (1) +p;y>cﬁ<P<t>>>
m£i

m#i
If we consider an action selection probability matéxfor SUs in whichg;; = p3;, the value

= o Ml_ 1 > Bm(t) + 13,) Cim(P(2)) = 5 C(P(2)) _ﬁji<t)cji(P<t))>38)

of g;; and Ag;; will be zero and we have:

M
A 1 ~ * *
NGji(t) = (M —3 Z(Qjm(t) + @) Cim(Q(t)) — q]‘z‘Cji(Q(t))) =0 (39)
It is clear that equation (39) is not dependent on valend therefore this equation is valid

for all transformation of action selection probability matrix, if2. Using (38) and (39):

Apji(t) = —ap;(t)Cii(P(1)) (40)
Now we consider the following Lyapunov function which is used in [37]:
V) == piln(l—py) (41)
J A
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and we investigate the properties of Lyapunov stability of the discrete-time system as follow:

« The Lyapunov function must be zero in equilibrium point.

V(P) is zero only when all of its argumemt; = 0 which means/ (P) is zero inP*.

« V(P(t+1))—V(P(t)) <0 VP(t). We investigate this property in the following equation:

=30 Dl DL = et + 1)) = pra(t)in(1 = 1)
= =D D 1@alt) + Aps())in(l = pia(t) — Spsa(t)) — pyi(B)ln(1 = pyi(1))]
= —pu(t) Z Z [(1 = Ci(P()In(1 — (1 = C5(P(#)))p;i(t) — In(1 — p;i(t) {42)

Since0 < 1-C};(P(t)) < 1, therefore ifp;;(¢) > 0, we can conclude thal —C';(P(t)))in(1—
(1 — Cyi(P(%))pji(t)) — In(1 — pyu(t)) > 0 and if p;;(¢) < 0, we can conclude that
(1 —Cu(P@®))in(1 — (1 — Cu(P())p;i(t)) — In(1 — pys(t)) < 0 and therefore/ (P(t +
1)) = V(P(t)) <0 YP(1).

Therefore, using Lyapunov theorem, it is proved tldtis an asymptotically Lyapunov

stable equilibrium point of the proposed scheme.

B. Proposition 5

Based on proposition 4, proposed algorithm reacheP’tan its convergence which is an
asymptotically Lyapunov stable point of the system. Hence, all of the initial points within the
domain/C converge taP*. If another equilibrium point such &* exists, all of the initial points
within the domain/C will also converge toQ*. This implies thatQ* = P*, and therefore, the

equilibrium point of the proposed scheme is unique.
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